
CloudMatcher: A Cloud/Crowd Service for Entity Matching
Yash Govind1, Erik Paulson1,2, Mukilan Ashok1, Paul Suganthan G.C.1, Ali Hitawala1

AnHai Doan1, Youngchoon Park2, Peggy L. Peissig3, Eric LaRose3, Jonathan C. Badger3

1University of Wisconsin-Madison, 2Johnson Controls, 3Marsh�eld Clinic

ABSTRACT
Entity matching (EM) �nds disparate data instances that refer to
the same real-world entity. EM is critical in health informatics, and
will become even more so in the age of Big Data and data science.
Many EM systems have been developed. In this paper, we �rst
discuss why it is still very di�cult for domain scientists to use
such EM systems. We then describe CloudMatcher, a cloud/crowd
service for EM that we have been building. CloudMatcher aims to
be a fast, easy-to-use, scalable, and highly available EM service on
the Web. We motivate CloudMatcher then describe its design and
implementation. Next, we describe its deployment in the past six
months, providing a detailed analysis of its performance over four
representative datasets. Finally, we discuss lessons learned.

1 INTRODUCTION
Entity matching (EM) �nds disparate data instances that refer to the
same real-world entity. For example, given the two tables in Figure
1.a, where each tuple describes a person, we want to �nd all tuples
across the tables that refer to the same real-world person, such as
tuples a1 and b1 in the �gure. Figure 1.b shows another example
of matching drugs across two tables [33]. Matching tuple pairs
are o�en referred to as matches, and variations of this problem are
known as record linkage, entity resolution, reference reconciliation,
deduplication, etc. (see the related work section).

EM is critical in numerous data management applications, and
will become even more so in the age of Big Data and data science.
In particular, many health informatics applications must match
entities such as drugs (see Figure 1.b), genes, proteins, patients in
electronic health records, etc. [33].

EM is also well-known to be very di�cult, raising both accu-
racy and scalability challenges. As a result, it has been studied
intensively over the past several decades, by the database, AI, KDD,
and WWW communities, among others. Many EM algorithms
have been proposed. Building on these algorithms, many EM sys-
tems have been developed (see [30] for a discussion of 33 recent
open-source and proprietary EM systems).

Today, however, it is still very di�cult for domain scientists
to use such EM systems. First, it is o�en non-trivial and time-
consuming to install and learn to use such systems. Second, many
such systems do not scale to large tables (e.g., those with several
hundreds of thousands of tuples). �ird, systems that scale o�en
do so by using a cluster of machines (running Hadoop or Spark).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
bigdas at KDD 2017, Hailifax, Nova Scotia, Canada
© 2016 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . .$15.00
DOI: 10.475/123 4

Figure 1: Examples of EM across two tables.

However, many domain scientists do not know how to, or do not
want to, install and use a machine cluster. Finally, and most seri-
ously, to use such systems e�ectively, domain scientists o�en need
to know quite a bit about EM, e.g., knowing about string similarity
measures (e.g., edit distance, Jaccard, TF/IDF, etc.) and when to use
which measure, about machine learning models and when to use
which model, etc. (See Sections 2-3). Obtaining such knowledge is
di�cult even for EM experts, let alone for most domain scientists.

�e CloudMatcher Service: To address these problems, in the
past few years we have been building CloudMatcher, a cloud/crowd
service for EM. We envision CloudMatcher to be a fast, easy-to-
use, scalable, and highly available service on the Web. Speci�cally,
to use this service, a user simply needs to go to CloudMatcher’s
Web site, uploads two tables to be matched, performs some basic
pre-processing, then pushes a bu�on. CloudMatcher will perform
EM end to end. To do so, it will use crowd workers on Amazon’s
Mechanical Turk (or some other crowdsourcing platform) to label
tuple pairs (as matched / no-matched). �e user just has to pay
for the labeling. Alternatively, instead of using crowdsourcing, the
user can just label these tuple pairs. At the end, CloudMatcher
will return the desired matches. In the backend, CloudMatcher
performs EM using a machine cluster that our group will maintain.

As described, when using CloudMatcher, the user does not need
to install or learn how to use any complicated system (using Cloud-
Matcher should be very straightforward). �e user does not have
to know EM (e.g., knowing string similarity measures). He or she
will only perform simple actions such as labeling a tuple pair as
matched / no-matched. Alternatively, if the user is not even willing
to label the tuple pairs, then he or she can pay to “outsource” that
work to a crowd of workers (assuming that the data is not sensitive
and that crowd workers can be quickly trained to label tuple pairs).
Finally, the system can scale to tables of millions of tuples and can
automatically add more machine resources as necessary.

Our initial motivation for building CloudMatcher is to serve
the EM needs of domain scientists at the University of Wisconsin,

bigdas at KDD 2017, Aug 14, 2017, Hailifax, Nova Scotia, Canada Y. Govind et al.

Figure 2: Most current EM solutions consist of a blocking
step and a matching step.

Madison, and a�liated research institutions (e.g., Marsh�eld Clinic),
and in fact, we have deployed such a service at UW-Madison, with
highly promising results (see Section 5). In the near future, we will
open up the service to the broader public, and make the service
open source, so that it can also be deployed at other places, as
appropriate.

Outline and Contributions: In the rest of this paper, we will
describe our ongoing work developing CloudMatcher, our initial
experience using it, and lessons learned. Speci�cally, we �rst de-
scribe the EM problem and typical EM solutions (Section 2). Next,
we describe Corleone, which performs EM end to end, using only
crowdsourcing. We then describe Falcon, which uses a cluster of
machines to scale up Corleone to tables of millions of tuples (Sec-
tion 3). Both the Corleone and Falcon works have been recently
published [14, 21].

We then describe CloudMatcher, which implements Falcon as a
cloud service. It turns out that doing so raises challenges in terms
of e�ective user interaction, fault tolerance, crash recovery, and
scalability (to hundreds or thousands of EM tasks that users may
submit at any time). In this paper we will describe these challenges
in detail, then describe our initial solutions (Section 4).

Using this initial solution, we have implemented a �rst version of
CloudMatcher, and used it for a variety of real-world EM tasks. We
describe our experience and lessons learned, regarding debugging
and explaining, understanding data/problem/solution, and inter-
action with the user, among others (Section 5). As far as we can
tell, this is the �rst work that publicly describes how to develop a
cloud-based EM service and discusses initial experience and lessons
learned (see also the related work section).

CloudMatcher is a part of a major project at UW-Madison on
developing data cleaning and integration tools for data scientists.
Another major part of this project develops Magellan, a Python
package that helps the user perform entity matching end to end
[4, 30].

2 PRELIMINARIES
In this section we describe the EM problem considered in this paper,
the blocking and matching steps of typical EM solutions, and recent
crowdsourcing solutions. Subsequent sections will build on these
to discuss the Corleone, Falcon, and CloudMatcher solutions.

Entity Matching: Many EM variations exist, such as matching
across two tables, matching within a single table, matching men-
tions in text documents into a knowledge base, etc. (see the related
work section). In this paper, we will consider the problem of match-
ing across two tables, speci�cally, given two tables A and B, �nd
all tuple pairs „a 2 A;b 2 B” that refer to the same real-world

entity (see Figures 1.a-b). �is problem se�ing is very common in
practice. Our solution however can also be applied to two other
common se�ings: matching tuples within a single table (known as
deduplication), and matching a set of tuple pairs.

Blocking and Matching Steps: Most current EM solutions per-
form a blocking step then a matching step. �e blocking step applies
a heuristic to remove tuple pairs judged obviously not matched
(i.e., “blocking” these tuple pairs from further consideration). �e
matching step then predicts Y/N, i.e., matched/not-matched, for
each remaining tuple pair. Figure 2 illustrates these two steps (here
the blocking step removes two tuple pairs out of six possible pairs).

Blocking heuristics are typically speci�ed by the user. For ex-
ample, when matching the two tables of persons in Figure 1.a, a
user may specify that “two persons whose states disagree do not
match”. Using this heuristic, the blocking step would remove the
tuples „a2;b1” and „a2;b2” because their states (CA and WI) are not
the same.

Blocking is necessary because matching all tuple pairs in the
Cartesian product of the two input tables A and B would be too
expensive, e.g., if each table has 100K tuples, A � B would have
10B tuple pairs. Hence, we need a way to quickly remove as many
obviously non-matched tuple pairs as possible, before applying the
time-consuming matching step to the remaining tuple pairs.

Of course, it would not make sense to do blocking by enumer-
ating all tuple pairs in A � B then removing those judged obvi-
ously non-matched, because the enumeration step alone is already
very time-consuming. Instead, blocking is typically done by using
the blocking heuristic to enumerate only those tuple pairs judged
possibly matched. For example, given the above heuristic about
disagreeing states, we can build an inverted index over Table B,
such that given a state, the index will return all tuples in B with
that state value. Next, given a tuple in Table A, we can consult the
index to �nd only those tuples in Table B that share the same state
(e.g., WI), then enumerate only those tuple pairs.

Numerous solutions have been proposed for the blocking and
matching steps, focusing on accuracy and scalability (see the related
work section).

Crowdsourcing: In the past few years, crowdsourcing has been
increasingly applied to EM. In crowdsourcing, certain parts of
a problem are “farmed out” to a crowd of workers to solve. As
such, crowdsourcing is well suited for EM, and indeed many crowd-
sourced EM solutions have been proposed (see Section 6).

To illustrate such crowdsourcing solutions, consider again the
EM work�ow in Figure 2. In this work�ow, recall that a�er the
blocking step, we apply a matcher to predict Y/N for the surviving
four tuple pairs. We can now send the three pairs with the Y pre-
diction to crowd workers to help verify these predictions. Suppose
that the crowd veri�es that „a;d” and „c; e” are indeed matches,
but „c;d” is not. �en we would output Y predictions for only the
two pairs „a;d” and „c; e”, thereby improving the precision of the
matching process. To increase the reliability of the answers ob-
tained from the crowd, a typical solution is to obtain three answers
from three crowd workers for each question, then take the majority
answer to be the �nal answer from the crowd. Current works use
the crowd to verify predicted matches (as illustrated above), �nd
the best questions to ask the crowd, and �nd the best UI to pose

CloudMatcher: A Cloud/Crowd Service for Entity Matching bigdas at KDD 2017, Aug 14, 2017, Hailifax, Nova Scotia, Canada

Figure 3: �e EM work�ow of Corleone.

such questions, among others (Section 6). Many crowdsourcing
platforms can be used for the above purpose. �e most popular
one is Amazon’s Mechanical Turk. Others include CrowdFlower,
Samasource, oDesk, Elance, etc.

3 THE CORLEONE & FALCON SYSTEMS
We now describe Corleone and Falcon, our prior work, which form
the basis for the CloudMatcher cloud/crowd EM service.

3.1 �e Corleone System
Corleone was motivated by the fact that while recent crowdsourced
EM works are promising, they are limited in that they crowdsource
only parts of the EM work�ow, requiring a developer who knows
how to code and match to execute the remaining parts. For example,
several recent solutions require a developer to write heuristic rules,
called blocking rules, to reduce the number of candidate pairs to be
matched, then train and apply a matcher to the remaining pairs to
predict matches. �e developer must know how to code (e.g., to
write rules in Python) and match entities (e.g., to select learning
models and features).

As such, it is very di�cult for an organization to concurrently
deploy multiple crowdsourced EM solutions, because crowdsourc-
ing each still requires a developer and there are simply not enough
developers. To address this problem, we developed Corleone [21], a
solution that crowdsources the entire EM work�ow, thus requiring
no developers. For example, in the blocking step, instead of asking
a developer to come up with blocking rules, Corleone asks a crowd
to label certain tuple pairs as matched/no-matched, uses these pairs
to learn a classi�er, then extracts blocking rules from the classi�er
(as we will explain soon). Other steps in the EM work�ow also
heavily use crowdsourcing, but no developers. �us, Corleone is
said to perform hands-o� crowdsourcing for entity matching.

Speci�cally, given two tables A and B, Corleone applies the EM
work�ow in Figure 3 to �nd all tuple pairs „a 2 A;b 2 B” that match.
�is work�ow consists of four main modules: Blocker, Matcher,
Accuracy Estimator, and Di�cult Pairs’ Locator.

�e Blocker generates and applies blocking rules to A � B to
remove obviously non-matched pairs (Figure 4.b shows two such
rules). SinceA�B is o�en very large, considering all tuple pairs in it
is impractical. So blocking is used to drastically reduce the number
of pairs that subsequent modules must consider. �e Matcher uses
active learning to train a random forest classi�er, then applies it
to the surviving pairs to predict matches. �e Accuracy Estimator
computes the accuracy of the Matcher. �e Di�cult Pairs’ Locator

�nds pairs that most likely the current Matcher has matched incor-
rectly. �e Matcher then learns a be�er random forest to match
these pairs, and so on, until the estimated matching accuracy no
longer improves.

Corleone is distinguished in that the above four modules use no
developers, only crowdsourcing. For example, to perform blocking,
most current works would require a developer to examine Tables
A and B to come up with heuristic blocking rules (e.g., “If prices
di�er by at least $20, then two products do not match”), code the
rules (e.g., in Python), then execute them over A and B. In contrast,
the Blocker in Corleone uses crowdsourcing to learn such blocking
rules (in a machine-readable format), then automatically executes
those rules. Similarly, the remaining three modules also heavily
use crowdsourcing but no developers.

Corleone can also be run in many di�erent ways, giving rise
to many di�erent EM work�ows. �e default is to run multiple
iterations until the estimated accuracy no longer improves. But
the user may also decide to just run until a budget (e.g., $300) has
been exhausted, or to run just one iteration, or just the Blocker and
Matcher, or just the Matcher if the two tables are relatively small,
making blocking unnecessary, etc.

3.2 �e Falcon System
As described, Corleone is highly promising. But it su�ers from a
major limitation: it executes mostly a single-machine in-memory
EM work�ow, and thus does not scale at all to tables of moderate
and large sizes. For example, using Corleone to match tables of 50K-
200K tuples would take weeks, rendering the system impractical.

To address this problem, we developed Falcon, a solution that
scales up Corleone to tables of millions of tuples. To do so, we
introduced three key ideas. First, we de�ne basic operators and use
them to model the EM work�ow of Corleone as a directed acyclic
graph (DAG). Next, we scale up the operators, using MapReduce if
necessary. Finally, we optimize within and across operators.

In what follows we discuss these ideas, but only to the extent
necessary for the purpose of this paper (see [14] for a complete
description of Falcon).

3.2.1 The EM Workflow Considered by Falcon. Currently, Falcon
considers only EM work�ows that consist of the Blocker followed by
the Matcher, or just the Matcher. We now describe the Blocker and
the Matcher, focusing only on the aspects necessary to understand
Falcon.

�eBlocker: �e key idea underlying this module is to use crowd-
sourced active learning to learn a random forest based matcher (i.e.,
binary classi�er) M , then extract certain paths of M as blocking
rules.

Speci�cally, learning on A � B is impractical because it is o�en
too large. So this module �rst takes a small sample of tuple pairs S
from A � B (without materializing the entire A � B), then uses S to
learn matcher M .

To learn, the module �rst asks the user to supply two positive
examples (i.e., two tuple pairs labeled matched) and two negative
examples (i.e., two tuple pairs labeled non-matched). Next, it uses
these “seed” examples to train an initial random forest matcher M ,
uses M to select a set of controversial tuple pairs from sample S ,

bigdas at KDD 2017, Aug 14, 2017, Hailifax, Nova Scotia, Canada Y. Govind et al.

Figure 4: (a) A decision tree learned by Corleone and (b)
blocking rules extracted from the tree.

Figure 5: ‡e EM workƒow of Falcon as a DAG of basic op-
erators.

then asks the crowd to label these pairs as matched / no-matched. In
the second iteration, the module uses these labeled pairs to re-train
M, usesM to select a new set of tuple pairs fromS, and so on, until
a stopping criterion has been reached.

At this point the module returns a €nal matcherM, which is a
random forest classi€er consisting of a set of decision trees. Each
tree when applied to a tuple pair will predict if it matches, e.g., the
tree in Figure 4.a predicts that two book tuples match only if their
ISBNs match and the number of pages match. Given a tuple pairp,
matcherM applies all of its decision trees top, then combines their
predictions to obtain a €nal prediction forp.

Next, the module extracts all tree branches that lead from the
root of a decision tree to a \No" leaf as candidate blocking rules.
Figure 4.b shows two such rules extracted from the tree in Figure
4.a. Œe €rst rule states that if two books do not agree on ISBNs,
then they do not match.

Next, for each extracted blocking ruler , the module computes its
precision. Œe basic idea is to take a sampleT from S, use the crowd
to label pairs inT as matched / no-matched, then use these labeled
pairs to estimate the precision of ruler . To minimize crowdsourcing
cost and time,T is constructed (and expanded) incrementally in
multiple iterations, only as many iterations as necessary to estimate
the precision ofr with a high con€dence (see [21]).

Finally, the Blocker applies a subset of high-precision blocking
rules toA � B to remove obviously non-matched pairs. Œe output
is a set of candidate tuple pairsC to be passed to the Matcher.

‡e Matcher: Œis module applies crowdsourced active learning
onC to learn a new matcherN, in the same way that the Blocker
learns matcherM on sampleS. Œe module then appliesN to match
the pairs inC.

3.2.2 Modeling the EM Workflow as a DAG of Basic Operators.
As described, the workƒow ofFalconcan be modeled as a DAG of
basic operators as shown in Figure 5. In this DAG, given two tables
A andB to be matched, we €rst take a sampleSof tuple pairs. Next,
we use the schemas ofA andB to automatically generate a set of
features (not shown in the €gure), then use these features to convert
each tuple pair inS into a feature vector, thereby convertingSinto
a set of feature vectorsS0.

Next, we perform active learning with the crowd1 over S0 to
learn a matcherM, then extract a set of blocking rulesRfrom M.
We then use the crowd to evaluate these rules and select a sequence
of rulesF judged to be optimal (see [21]). Next, we executeF over
the tablesA andB. Œis produces a set of candidate tuple pairsC.

At this point, the blocking step ends, and the matching step
begins. We €rst convert each tuple pair inC into a feature vector,
thereby convertingC into a set of feature vectorsC0. Œen we
perform active learning (again) with the crowd to learn a matcher
N. Finally, we applyN to the feature vectors inC0 to predict
matches.

Œe above workƒow uses eight basic operators. As described,
these operators involve complex rules, crowdsourcing, and machine
learning, and can be used to compose a variety of EM workƒows
(see [14]).

It is important to note that we have developed e•cient imple-
mentations for these operators (using MapReduce where necessary),
and have also developed techniques to optimize within and across
operators. We omit further details here for space reasons (see [14]).

4 THE CLOUDMATCHER SERVICE
We are now in a position to discussCloudMatcher, the cloud/crowd
service that we have been building. In what follows we discuss the
motivations, goals, and then our ongoing work onCloudMatcher.

4.1 Motivations and Goals
As mentioned in the introduction, we want to provide EM services
to hundreds of domain scientists at UW-Madison and a•liated
institutions. Domain scientists o‰en do not know how to, or are
reluctant to, deploy EM systems locally (such systems o‰en require
a Hadoop cluster, as discussed earlier). So we want to provide such
EM services on the cloud, supported in the backend by a cluster of
machines maintained by our group.

During any week, we may have tens of submiŠed EM tasks
running. Many of these tasks require blocking, but the users do
not know how to write blocking rules (which o‰en involve string
similarity functions, e.g., edit distance, Jaccard, TF/IDF), and we
simply cannot a‚ord to ask our busy developers to assist the users
in all of these tasks.

Œus, we planned to deploy the hands-o‚ solution ofCorleone.
A user can just submit the two tables to be matched on a Web
page and specify the crowdsourcing budget. We will runCorleone
internally, which uses the crowd to match. As described,Corleone
seems perfect for our situation. Unfortunately, it executes mostly a
single-machine in-memory EM workƒow, and does not scale at all
to tables of moderate and large sizes. So we will useFalcon, which

1We omit the step of asking the user to supply \seed" examples to avoid making the
€gure too cluŠered.

CloudMatcher: A Cloud/Crowd Service for Entity Matching bigdas at KDD 2017, Aug 14, 2017, Hailifax, Nova Scotia, Canada

Figure 6: CloudMatcher as a cloud/crowd EM service.

scales to tables of millions of tuples. In particular, we will execute
the EM workƒow ofFalcondescribed in Figure 5.

It is important to note that if users do not want to engage the
crowd, they can label the tuple pairs themselves. Œis in e‚ect
provides a self-service EM for the users. Most users we have talked
to, however, prefer if possible (e.g., if the data is not sensitive or
too di•cult for the crowd to match) to just pay a few hundred
crowdsourcing dollars to obtain the result in 1-2 days. Figure 6
illustrates both the crowdsourcing and the self-service options
discussed above.

Our goals forCloudMatcherare as follows:

� E•cient resource consumption: Use minimal machine
and crowd resources to perform EM tasks.

� Fault tolerance: If a machine or process crashes, can
recover and continue gracefully.

� Crash recovery: Executing an EM task can take hours
(or days if crowdsourcing is involved). As a result, crash
recovery is critical. Speci€cally, ifCloudMatchercrashes
in the middle of an EM task, when resumed, it should
continue where it crashed, instead of restarting the task
from scratch.

� Scaling: CloudMatchershould scale, both for a single
EM task and for multiple EM tasks. Œat is, a single EM
task should execute as fast as possible, and the system
should be able to handle hundreds or thousands of EM
tasks concurrently, without being slow on anyone of them.

� Optimization: In order to scale, ideally the system must
be such that there are multiple opportunities for optimiza-
tion, and the system can make use of these opportunities.

� E•cient management of heterogeneous execution en-
vironments: When executing an EM workƒow, each step
in the workƒow may require its own execution environ-
ment. For example, one step is to be executed in Python on
a single machine, whereas another step requires Java over
a Hadoop cluster.CloudMatchershould be able to handle
a broad range of such heterogeneous environments.

� Smooth user experience: Œe user should have a very
smooth experience with the system. Œe GUI must be
intuitive and requires very liŠle guessing to work with.
Œe system latency should be at interactive speed, i.e., it
should not take more than a few seconds to respond to the
user. If the user works in a browser, then stops the work
(say for lunch), or close the browser and open another one
in the same or another machine, then the user should be
able to seamlessly continue working.

� Progress report: Œe system should tell the user where
it is in the EM process and give estimations on how much
longer it will take to complete certain tasks.

� Visualization: Œe system should provide as much visual
information to the user as possible, especially in terms of
its progress.

Œe above set of goals makes it clear that developingCloudMatcher
is not a simple maŠer of deployingFalcon. For example,Falcon
focuses on techniques to scale up a single EM workƒow. It does
not focus on goals such as fault tolerance, crash recovery, smooth
user experience, etc.

4.2 Limitations of Current Solutions
To implementCloudMatcher, the simplest solution is to convert
each submiŠed EM task into aFalconDAG, as shown in Figure
5, then execute the DAG using a workƒow management system
(WMS) such as Luigi, Airƒow, or Pinball. Many such WMSs have
been developed. In theory, they can guarantee certain kinds of fault
tolerance and crash recovery. For example, the WMS can write the
output of each node in the DAG to disk, and thus can guarantee that
in the case of a crash, DAG execution does not have to restart from
scratch. In addition, such WMSs can easily handle multipleFalcon
DAGs being run concurrently, as is common in cloud seŠings.

Œere are however two major problems with theFalconDAG.
First, the DAG's granularity is too coarse, rendering it not e‚ec-
tive for crash recovery, optimization, and best usage of resources.
Speci€cally, some of the steps in this DAG can take a very long time,
and currently there is no easy way to save their partial results for
crash recovery. Consider for example a step that performs active
learning with the crowd to learn a matcher. Œis step can perform
up to 30 iterations of active learning, and can take hours or days
(if the crowd is slow). Ideally, we should be able to save the output
of each iteration, so that in the case of a crash, we can resume at
the crashed iteration. However, since currently the entire step is
modeled as a single node in theFalconDAG, it is di•cult for us to
perform such partial saving. Also, coarse steps make it di•cult to
optimize within and among the steps.

Another problem is that some of the steps in theFalconDAG
involve user interaction. For example, before we can start the €rst
active learning process (on sampleS0), we need to ask the user to
supply at least two positive examples and two negative examples.
(Œis step is not shown in Figure 5, to avoid making the €gure too
cluŠered.) Machine-wise this step does not take long to execute.
But it involves asking for an input from the user, and this can o‰en
cause a problem. Œe user may stop in the middle, go to lunch,
have a phone call, etc., in which case this step will be le‰ \hanging",
waiting for the user to get back. If not implemented carefully, this
step will continue to \hog" resources until the user responds. Œe
same problem arises for any step involving crowdsourcing.

Note that this second problem is relatively new, because the
current workƒow management systems (e.g., Luigi, Airƒow, etc.)
typically are designed to execute DAGs that can be run in batch
mode. Œey are not designed for e•ciently executing DAGs that
can involve user interaction in the middle. In theory, they can
still be used to execute such DAGs, but it will typically result in
ine•cient use of resources (as the executor waits for the user to get

bigdas at KDD 2017, Aug 14, 2017, Hailifax, Nova Scotia, Canada Y. Govind et al.

Figure 7: ‡e CloudMatcher architecture

back from lunch, say) and can negatively a‚ect many other DAGs
that are being concurrently executed.

4.3 Key Ideas of the CloudMatcher Solution
To address the above limitations, inCloudMatcherwe employ the
following key ideas:

� We convert theFalconDAG into an EM workƒow at a
much €ner granularity, to maximize the opportunities for
crash recovery, optimization, and e•cient resource usage.
Œe new EM workƒow is not a DAG, as it involves loops
(in addition to conditionals).

� For the newCloudMatcherEM workƒow, we clearly de€ne
tasks (i.e., nodes of the workƒow graph) that areinteractive
(i.e., interacting with a user or a crowd to request some
input).

� We partition the CloudMatcherworkƒow into \pieces"
such that each piece is either aninteractivetask or a work-
ƒow fragment that can be executed entirely inbatchmode.

� We de€ne three kinds of execution engines: user interac-
tion (UI) engine, crowd engine, and batch engine. Œe UI
engine is designed to execute interactive tasks e•ciently,
and similarly the crowd engine is designed for executing
tasks that require crowdsourcing. Finally, the batch engine
is designed for executing batch-mode workƒow fragments.

� We use a meta-manager to execute the entireCloudMatcher
workƒow, by executing each piece of the workƒow using
the appropriate execution engine.

� Finally, we divide the responsibilities for managing fault tol-
erance and crash recovery appropriately among the meta-
manager and the execution engines.

PuŠing these ideas together produces theCloudMatcherarchi-
tecture shown in Figure 7. In this €gure, the Web app module is
responsible for authentication, account creation, and processing
GET/POST requests from users. Given a submiŠed EM task, the
meta-manager converts it into an EM workƒow, then partitions the
workƒow into pieces, where each piece is interactive or batch by
nature, as described earlier. Œe meta-manager then executes these
pieces using the appropriate execution engines. Œe meta-manager
and the execution engines will coordinate the management of fault
tolerance and crash recovery, using the meta-data store (which
records for example which nodes in which graph fragments have
been executed) and the data store (which stores the input/output
and intermediate data for the workƒow nodes).

We now elaborate on the most important aspects of the above
solution architecture.

4.4 ‡e EM Workƒow of CloudMatcher
Recall that we want to break each long-running step in theFalcon
DAG into many much smaller steps, whenever possible, and isolate
all \points" in the FalconDAG where we need user interaction,
then make those \points" into their own steps.

Figure 8 shows the resulting workƒow forCloudMatcher. Œis
workƒow is quite long and consists of three parts: Part (a) fol-
lowed by Part (b) followed by Part (c). We now brieƒy describe this
workƒow, and contrast it to theFalconone.

� Œe very €rst task in theCloudMatcherworkƒow is \Cre-
ate job" (see Figure 8.a). In this task, the user goes to the
CloudMatcherWeb page, creates a job (whose goal is to
match two tables), and supplies some job related informa-
tion (e.g., contact email). Next, the user uploads the €rst
table, TableA. Œe system then pro€les this table, e.g.,
counting the total number of tuples in the table and show-
ing that to the user (to con€rm that the table has indeed
been uploaded and everything appears to be in order). See
the next two tasks on the €gure. Œese two tasks will be re-
peated one more time for TableB (the number \2x" on the
arrow from \Pro€le table" back to \Upload table" indicates
the maximal number of iterations for this loop).

� Œe €rst two tasks, \Create job" and \Upload a table", are
interactive, in that they must interact with the user to ob-
tain information. As discussed earlier, we \isolate" such
interactions into their own tasks. On the €gure, we show
such tasks either with a small human €gure or inside a dot-
ted box with a small human €gure. Œe third task, \Pro€le
table", is not interactive. We refer to such tasks asbatch
tasks, as they can be executed in batch mode.

� Œe next task, \Check data/schema constraints", veri€es
certain integrity constraints, e.g., trying to identify a key
column, and if none found, then create a key column for the
table. Œe subsequent tasks on Figure 8.a obtain a sample
Sof tuple pairs, convertS into a set of feature vectorsG,
and obtain at least two positive examples and two negative
examples from the user. We omit further details for space
reasons.

� Once the workƒow fragment on Figure 8.a ends, we con-
tinue with the workƒow fragment on Figure 8.b. Here, we
€rst convert the two positive and two negative examples
(called \seeds") into feature vectors, then start the active
learning process. Notice that this active learning process
was earlier just a single task in theFalconworkƒow. Here
it has been broken into a loop of four tasks: \Train clas-
si€er", \Check stopping condition", \Select batch of tuple
pairs", and \Label batch". We repeat this loop up to 30
times. Notice also that the €rst three tasks of this loop
are batch task, whereas the last one (\Label batch") is an
interactive task.

� Once the active learning €nishes, we obtain a matcherM,
from which we obtain a set of candidate blocking rules,

CloudMatcher: A Cloud/Crowd Service for Entity Matching bigdas at KDD 2017, Aug 14, 2017, Hailifax, Nova Scotia, Canada

Figure 8: A re€nement of the Falcon DAG, to create the workƒow for CloudMatcher. ‡e resulting workƒow consists of three
parts, as shown in (a)-(c).

then evaluate the rules and so on. We omit further descrip-
tion of the rest of the tasks in Figure 8.b, as well as the
tasks in Figure 8.c (as they are similar to those in Figure
8.b).

Compared to theFalconDAG, theCloudMatcherworkƒow is di‚er-
ent in the following aspects. First, it is at a much €ner granularity,
with all long-running tasks being broken down into as many smaller
tasks as possible. Second, the workƒow is no longer a DAG. It now
has loops (in addition to conditionals). Finally, the workƒow is a
combination of interactive tasks and batch tasks.

4.5 Partitioning the EM Workƒow
Given an EM workƒow as described above, the meta-manager of
CloudMatcherpartitions it into workƒow fragments, such that
each fragment is strictly interactive or batch by nature. Figure 9
shows how the €rst part of theCloudMatcherworkƒow (which is
the part shown in Figure 8.a) is partitioned into eight interactive
fragments (each of which is in yellow) and six batch fragments (in
blue). Œe uppermost batch fragment, for example, consists of three
tasks: \Gen feature funcs", \Gen sample pairs", and \Gen feature
vecs".

4.6 Executing the Workƒow Fragments
A‰er partitioning, the meta-manager executes the workƒow frag-
ments, each in the appropriate execution engine. Speci€cally, each
batch fragment will be executed using the batch engine, which uses
a well-known current workƒow management system, such as Luigi,
Airƒow, or Pinball. If an interactive workƒow fragment does not
require crowdsourcing, then it only needs to interact with a single
user to request some input. In this case, we execute the fragment
using the user interaction (UI) engine. Otherwise, we execute the
fragment using the crowd engine.

Œe meta-manager uses the metadata store and the data store to
coordinate the execution of the various workƒow fragments, and to
handle fault tolerance and crash recovery. We omit further details
for space reasons.

4.7 ‡e User Interaction/Crowd Engines
Finally, we describe the working of the UI engine and the crowd
engine. Consider executing an UI taskE. Œe UI engine starts by
sending a request for the user to do an action (e.g., providing the
name of the job to be created and a contact email address) to the
user's Web browser (via the Web app). At some point, a‰er the
user has €lled out the requested information, he or she will click
the submit buŠon, which sends a request to the Web app, which in
turn contacts the UI engine.

	Abstract
	1 Introduction
	2 Preliminaries
	3 The Corleone & Falcon Systems
	3.1 The Corleone System
	3.2 The Falcon System

	4 The CloudMatcher Service
	4.1 Motivations and Goals
	4.2 Limitations of Current Solutions
	4.3 Key Ideas of the CloudMatcher Solution
	4.4 The EM Workflow of CloudMatcher
	4.5 Partitioning the EM Workflow
	4.6 Executing the Workflow Fragments
	4.7 The User Interaction/Crowd Engines

	5 Deployment & Lessons Learned
	5.1 Deployment
	5.2 Lessons Learned

	6 Related Work
	7 Conclusions
	References

